Derivative-variable correlation reveals the structure of dynamical networks

نویسنده

  • Zoran Levnajić
چکیده

We propose a conceptually novel method of reconstructing the topology of dynamical networks. By examining the correlation between the variable of one node and the derivative of another node’s variable, we derive a simple matrix equation yielding the network adjacency matrix. Our assumptions are the possession of time series describing the network dynamics, and the precise knowledge of the internal interaction functions. Our method involves a tunable parameter, allowing for the reconstruction precision to be optimized within the constraints of given dynamical data. The method is illustrated on a simple example, and the dependence of the reconstruction precision on the dynamical properties of time series is discussed. Our theory is in principle applicable to any weighted or directed network whose interaction functions are known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Untangling complex dynamical systems via derivative-variable correlations

Inferring the internal interaction patterns of a complex dynamical system is a challenging problem. Traditional methods often rely on examining the correlations among the dynamical units. However, in systems such as transcription networks, one unit's variable is also correlated with the rate of change of another unit's variable. Inspired by this, we introduce the concept of derivative-variable ...

متن کامل

Dynamical networks reconstructed from time series

Novel method of reconstructing dynamical networks from empirically measured time series is proposed. By examining the variable–derivative correlation of network node pairs, we derive a simple equation that directly yields the adjacency matrix, assuming the intra-network interaction functions to be known. We illustrate the method on a simple example, and discuss the dependence of the reconstruct...

متن کامل

Synchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit

Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013